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CHAPTER 1

KINEMATICS OF
PARTICLES

Kinematicsisthe study of motion without regard to the force or forces which influence the
motion

1.1) The particle

It is abody neglecting its volume and internal structurei.e. it is considered as concentrated
in ageometrical point. We use this concept to ssmplify the study of the motion.

1.2) General description of a motion of a particle

Consider a particle "P". let "O" be an arbitrary point in the three dimensions space which is
considered as the origin. Let "r* be the position vector of "P" with respect to "O". let "t"
denotes to the time, if " r " changes with respect to time "t", we say that "P" moves with
respect to the origin "O" i.e.

® ®
r=r

(t)

®
in classical mechanics, the main role is to obtain " r ()" for any mechanical system under

®
some certain conditions. The derivative of r with respect to time "t" is known as the
velocity of point "P" relativeto "O".

®
If is clear that the velocity is avector and is denoted by v

- dr )

dt

®
If v isaconstant vector, we say that "P" moves with uniform velocity relative to "O". i.e.

®
the particle moves in a straight line with constant speed. If |V is zero, then "P" is at rest



with respect to "O". i.e. the state of rest is a special case of a motion with regular uniform
velocity .

. ®
I.e. v=constant=0

® ®
® 2
The acceleration is a vector quantity isdefined a = z—:’ = ddt Zr

1.3) Rectilinear Motion

Rectilinear motion is motion of a point "P" along a straight line which for convenience
here will be chosen asthe x-axis. Vector symbols are omitted in this part.
The position of a point "P" at any time is expressed in times of its distance "x"
from afixed origin "O" on the x-axis. Thisdistance "x" is positive or negative.

The instantaneous velocity "v" of apoint "P" at "t" is v:%

2
The instantaneous acceleration "a" of a point "P" at "t" is a=%:% also
_ Qv dx_ dv
dx dt  dx

For constant acceleration " a=k " the following formula are valid

v =V, +kt
vZ =3 + 2kx
x=vpt+1kt?
x=3 (v, +V)t

Where v, isinitial velocity, v isfinal velocity, t istime, x isthe displacement.



SOLVED EXAPLES

1. a particle moves on a vertical axis with an acceleration a = 2Jv, whent =2 s its
displacement x = 64/3 ft and its velocity v=16 ft/sec. determine the displacement,
velocity, and acceleration of the particle at t=3 sec

Solution

Since a= %, then 2.v = % separating the variables, % =2dt by integrating
\"

2v=2t+C, but v=16 ft/swhen t=2 sec, hence C, =4 - the equation becomes

WV S tH2 O V(4 2] oot e e e e e (1)

since v = % ,then (t+2) = % separating the variables, dx = (t +2)* dt by integrating
X = %(t +2)*+C, but x=64/3 ft when t=2 sec, hence C, =0 - the equation becomes

X = %(t F 2 ) @)

when t=3 sec

x:%(3+2)3:41.7ft, v=(3+2)?=251t/s and a=2Jv=2J25=101t/s’



2. in the system shown in the figure. Determine the velocity and acceleration of block
"2" at the shown instant.
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Solution

Fig (b) is drawn to show the position of each weight relative to the fixed line. The length of
the cord between the weight (1) and point "A" is constant and equals to one-half the
circumference of pulley "B". The length of the cord between weights (2) and (3) is
constant and equals to one-half the circumference of pulley "A" plus x, - x+ x5 - x, thus

X, + X =congtant and x, + x; - 2x = constant

The time derivatives then show

X1 +#X°=0 i (1)
XPPHXP =0 i (2)
X3+ X5 - 2X" =0 tiiii i 3
X3 +X3 - 2X° =0 i (4)

Calling the upward direction positive and substituting x? =6 ft/ s into equation (1) we find
X°=-6ft/s

Substituting this value together with x3 =3 ft/ s into equation (3) we find x5 =-15ft/s

Similar reasoning for the accelerations show x® =2 ft/s* and x® =8 ft/ s



1.4) CURVILINEAR MOTION

Curvilinear motion in a plane is motion along curve (path). The velocity and acceleration
of apoint will be expressed in

a) Rectangular components

b) Tangential and normal components

¢) Radia and transverse components

1.4.1) Rectanqular components

® ® ®
The position vector r of apoint "P" on such acurve in term of the unit vectors i and j
along the x and y axes respectively iswritten

® ®
Aspoint "P" moves, r changesand the velocity v can be expressed as
®
® ® ® ® ® :
V:%i+ﬂj:x°i+y°j y 4 Yi
dt dt

The speed of point is the magnitude of the vel ocityC\@/ ,that is

®
If g istheangle which the vector v makes with the x-axis, we
Can write
0
y _1dy/dt:tan_1ﬂ

q=tan''Z- =tan
x° dx/ dt dx

®
Thus, the velocity vector v istangent to the path at point "P"

® ®
The acceleration vector a isthetimerate of changeof v, i.e.

® 2,® 2,® ® ®
a:%i_;.d_zyjzxooi_'_yooj

dt
: . ®  ® 2 2
The magnitude of the acceleration a is |a| = (x°°) +(y°°)




1.4.2) Tangential and normal components

® ® ®
We now show how to express the vector v and a interm of the unit vector g, tangent to

® ®
the path at point "P" and the unit vector e, at right anglesto e, .

Y of(s)
l sz fns
% %
- .EI-
E.ltl-h n.";{
P
Fig (2) Bl
Fig(zb)

In fig.(2), the point "P" is shown on the curve at a distance "S' along the curve from

®
a reference point "Po". The position vector r of point "P" is a function of the scalar

quantity "S'. To study this relationship, let Q be the point on the curve near "P". The
position vectors (?(S) and (?(S)+ Dr (s) for point "P" and " Q" respectively are shown as
well as the change Dr (S) which is directed straight line PQ. The distance along the curve
from "p" to " Q" is DS. The derivative of (?(S) with respect to "S" is written

® ®
-r

(s) Dr(s)

ar(s)_ . r(s)+Dr(s)
dS DS® 0 DS

= LiMpgg o
as Q approaches"P", theratio of the magnitude of the straight line Dr (S) to the arc length
DS approaches unity, also in direction the straight line D(? (S) approaches the tangent to the

®
path at "P". thus, in the limit, aunit vector e isdefined as follows

dr (s) e
s e (1)




®
next consider how e, changeswith S. Asshown in figure (3-a) the center of curvature"C"

iIsadistance r from "P". if we can assume point " Q" closeto "P", the unit tangent vectors

® ® ®
at"P"and"Q" are e and e + De, respectively.

Since the tangents at "P" and "Q" are perpendicular to the radii drawn to "C", the angle

® ® ® ® ® ®
between e and e+ De as shown in figure (3-b) isalso Dq. Because ¢ and e +De are

®
unit vectors, De, represents only a change in direction (not magnitude). Thus the triangle

in figure (3-b) isisosceles and is shown drawn to alarge scale in figure (3-c).

®

De,

N

It is evident that

=siniDg @ Dg from which ‘ES@e[‘@Dq but from figure (3-a)

®

De,
DS

®
DS=PDg hence we can write DS @r ‘De[‘ thus limpgg o rl

® ®
Also, in the limit De is perpendicular to e, and is directed toward the center of

®

d et

o
curvatures, then S e

U®
/ Dsgen :g—ien (2)
a Mo

_ ®
=limpsg o gDet

® ® ®
The velocity vector v may now be given in terms of the unit vectors e, and e . Using

equation (1)
® ® ®
V:%:%%:SOet (3)
- ® -
the acceleration vector a iIs
® ® ® A ® ®
a:d_V:imso et g:SOO et +SO d e
t dtg p dt
® ® 0 e
But de; :dEth:S_
dt dS dt r
® OO® 502 ®
Then a=S & +|r—en 4



1.4.3) Radial and Transver se components

- ® - ® - - -
The velocity vector v and acceleration vector a are now derived in terms of unit vectors

along and perpendicular to the radius vectors.

Note that there isan infinite set of unit vectors because any point my be chosen as apole.

® ®
Theradius vector r makesan angle f with x-axis. The unit vector e, ischosen outward

® ® ®
along r . Theunit vector e isperpendicular to r and in the direction of increasing f

) ® ®
l.e. r=rey 5)
® ®
: ®  ® ® ® o de
The velocity vector v is v=r°=r°e, +re’; where e, = ”

® ®
0 0
to evaluate e, and e , allow "P" to moveto a nearly point Q with

® ® ® ®
a corresponding set of unit vectors e, + De, and g +De asshownin

figure (5) the limit d(:ja, has a magnitude df intheéfrD :

=)
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figure (5) " (a) LN (3!
® ® ® ®
0 0
r_der df _foe and ef_def df foe
df dt df dt

®
where f ° isthe time rate of the angle f which the radius vector r makes with the x-axis.

®
®
The velocity vector v may now be written as

® ®
=r0=r0 er +rf 0 ef

(6)



®
The acceleration a isthe time derivative of the termsin equation (6)

®
®

® 0 ® ®
e +rl e, +r°flef +rf P ef +rf e’

®
a=r°

® 00® 0 0® 0 0® 00® 02®
a=r e +rfe +rif es+rfer-rf’ er

where f ® isthe angular acceleration (time derivative of the angular velocity f °) i.e.
®

a:gi’oo- rfozger+(2r°f°+rf°°)%f 7)

as a special case of curvilinear motion consider a point moving in acircular path of radius

"R" , subgtituting "R" for "r" in equations (6) and (7), noting R° =R* =0, We obtain
_ 0% © _ nf 025° 00\
=Rf%ef and a=f Rf* e +(RF 00) s 8)

Thus the acceleration has a tangent component of magnitude (Rf 00) and anormal

component directed toward the center of magnitude Rf 02

-\Y -



SOLVED EXAPLES

3. show that the curvature of aplane curve at point "P" may be expressed as

(on + y02 )%

1 X yoo - X% yo
r

Solution

From the cal culus, the curvature of any curve y=f(x) at apoint "P" is

1_ (d?yrax?) (1)
"

203/2 .......
g:eH@g T
g o g

0 2 . . . 0 A . 0,,00 _ 00,,0
put Y- 8V g Oy d o d et d @ et o Xy Xy’
dx dt dx x° dx dxgdxg dtedxegedxg dtgx’ £x°g x°

substituting into (1), we obtain the required equation.

4. particle describe the path y=4x2 with constant speed v, where x and y are in meters.
What is the normal component of the acceleration ?

Solution
2 2
sincerl: ¢ y/dxc)g/: 5 _
S.e ot ooy
& eixo g
2 2
an:V—:: 8v m/s

-\Y -



5. aparticle moves on curve of equation of path r=20 if theangle 0 =t?, determine
the velocity and the acceleration of the particle when 6 = 60° use two methods.

Solution

a- Polar Coordinates

sinceq=t?,q’=2t, r=29 =2t%, r° =4t
The velocity v a g :% radiansis formed as follow

q :%:tz or t=1.033sec
® ® ® ® ®
v=rle, +rf% e, =4(1.033) e, +[(2* 1.047)(2* 1.033) e,
® ® ®
v=409e, +428 ¢,
And v = /(4.09) +(4.28)° =592 ft / s with g, =30° +tan'18@'ﬂ9:73.7°
e4.28 g
® .. ®
The acceleration a:gi’oo- rfozger+(2r°f°+rf00)@éf
® ® ®
a=-477 er +20.94 ef
2 2 2 (g R 1ae 4770 0
And a=+/(- 4.77)* +(20.94)? = 215 ft/ s> with q, =30° - tan *EL10=172
&£2094 g

b- Cartesan Coordinates

x=rcosq =2qcosq =2t?cost? and y=rsing=2qsing = 2t?sint?

then x° =4tcost? - 4t3sint? =-1.66 ft/s

y® =4tsint? + 4t3cost? =5.68 ft/ s

hence v =+(- 1.66)? +(5.86)2 =5.92 ft/ s with q = tan'18?—229:73.7°
el.0o g

-Y¢ -



The acceleration

then x® = 4cost? +4t(— 2tsint2)— 12t2 sint? - 8t* cost? = - 20.52 ft / s

y® = 4sint? +8tcost? +12t% cost? - 8t* sint® =6.34 ft/ s

hence a=+/(- 20.52) +(6.34)% =215t/ s? with g :tan-lgeﬂéz 17.2°
&2052 ¢

6. A fly wheel 1.2 m in diameter accelerates uniformly from rest , to 2000 r.p.m, in 20
sec. what is the angular acceleration?

Solution

Since congtant acceleration isinvolved then the formulas of constant acceleration may be
used.
I.e. the angular motion is amilar to rectilinear motion, i.e. "®" replaces"v", " 6" replaces
"x"and" a " replaces"a’".
The wheel startsfrom rest , hence wo=zero.
The formulainvolving these four symbolsis ® = @mo + a t
o =2 JIN/60 = 2 JI 2000 /60 = 209 rad/sec
hence
0 =0- 0o/t =209/20 =10.5rad/¢

-Yo.



PROBLEMS

1) A particle begins its motion in a straight line such that its position relative to a fixed
point on that straight lineisgivenby : X =t -9t + 15t + 5 Find the position of the

particle when the acceleration vanished, Find aso the total distance.

2) A particle moves in a straight line with acceleration a=-5cm/ sec? whent =0, the
particle is at the origin and its velocity vo =20 cm / sec. Find the velocity and the distance

covered when t =6 sec.

3) The acceleration of a particle moves in a straight lineis a=5-2V  whereV isits
velocity if the particle begins its motion from rest, Find the time needed to the velocity

becomes 1.25 m/ sec.

4) A particle movesin astraight line with acceleration a=m t> . Where m is constant find
thevalueof m if (v=-32m/s a t=0sec) and (v =32m/s at t=4 sec). Also find the
position (x) at any instant if the particle released from rest.

5) A particle movesin a straight line such that v = 2 / 1+x where v is the velocity Find the
time needed for particle to arrive the point x = 4 cm. Find also its acceleration. If the

particle begins its motion from rest from the origin.
6) Find the velocity and the acceleration at t=1 sec of a particle moving with

x=(t+1? and y=(t+1)?

7) The plane motion of aparticle is defined by the equations r =t* - 3t* and q =t - 4t find

the velocity and the acceleration at t=1 sec.

8) find the radial and the transverse components of a moving particle such that

r=k(1+sint) and f =1- e* where kisconstant and t isthe time.

T



9) A partticle moves on the curve r=k(1- sint) find the radia and the transverse
components of the acceleration knowing that the particle moves with constant angular
velocity 3 rad/s.

10) If the radial and transverse components of the velocity of a particle are respectively
ar?, 2ar?, where a is a constant. Find the components of the acceleration, find also the

equation of the path, knowing that r =a when 6 =0.

11) A fly wheel 1.2 min diameter accelerates uniformly from rest , to 2000 r.p.m, in 20
sec. what is the angular acceleration? also determine the linear velocity and linear

acceleration of a point on the rim of the fly wheel .

12) An automobile travels at a constant speed on a highway curve of 1000 m radius. if the
normal component of the acceleration is not to exceed 1.2 m/<?, determine the maximum

velocity.
13) A car begins motion from rest with uniform tangential acceleration 3 ft/sec> on a
curved road with radius of curvature 400 ft. Find the covered distance before the

acceleration reaches 6 ft / sec?.

14) find the tangential and normal components of the acceleration of a particle moving by

thefollowing equations. X =2t+3 & Y=t-1

15) Prove that the acceleration of a point moving in a curve with uniform speed is p¥ 2.

Suchthat p isthecurvatureand ¥ istheinclination angle.

-\VY.



CHAPTER 2

MOTION OF A
PROJECTIES

The object of the science of dynamicsis to investigate the motion of bodies as affected by
the forces which act upon them.

2.1) Newton's laws of motion

1-A particle will maintain its state of rest or of uniform motion (constant speed) along a
straight line unless compelled by some force to change that state. In other words, a particle

accelerates only if an unbalanced force acts on it.

2- Thetime rate of change of the product mass and velocity of a particle is proportion to
the force acting on the particle. The product of the mass"m" and the velocity "v" isthe

linear momentum "G". thus the second law states:

® -

o dgemvg d%

F=k-& Z=
dt dt

If "m" is constant the above equation becomes

® ®
F = kmd—V =kma
dt

If asuitable units are chosen so that constant of proportionality k =1, these equations are

3- to every action of force, there is an equal and opposite reaction, or force. In other word,
If aparticle exerts aforce on a second particle, then the second particle exerts a

numerically equal and opposite directed force on the first particle.

-YA-



2.2) Acceleration

Acceleration of aparticle may be determined by the vector equation

® ® ®
aF=ma=mr®

®
Where a F = vectors sum of all the forces acting on the particle, "m" is the mass of the
®

- ® -
particle, a =r* = acceleration.

2.3) D'alembert's principal

jean D'alembert in 1743 suggested that Newton's second law of motion could be written
® ®
aF-ma=0

®
Thus an imaginary force called an "inertiaforce", which is collinear with the a F but

oppositely sensed and magnitude m% would if applied to the particle cause it to bein
equilibrium. the equations of equilibrium would then apply actually the particleisnot in

equilibrium, but the equations of motion can be applied in the form shown above.

2.4) Problemsin dynamics

The solutions of problemsin dynamics vary with the type of force system. Many problems
involve forces which are constant. In other problems the force vary with the distance.
The subject of ballisticsisintroduce in an elementary manner, which deals with the

motion of a projectile under the action of the constant force of gravity.

2.5) The Projectiles

Consider the gravity as the only one acting on the projectile i.e. neglect the resistance of
the air, the rotation of the earth about itself and about the sun. Thisis due to the short time
needed to the motion of the projectile. We also neglect the effect of the configuration of the

projectile on the motion i.e. it isconsder as a particle.

-Y4-



To study the motion of aparticle (projectile), let (:j/o be the initial velocity in adirection
makes an angle a with the horizontal. Consider the orthogonal Cartesian axes x-y in the

plane of motion such that the origin is coinciding with the point of projection. Let p(x,y) be

any point of the path of the projectile, and C? its position vector i.e.

B(R.0)
-
® © @
I’:XI+yj
® ® @
r0:X0|+yOJ
® ® ®
r.00 =XOO I_I_yooJ

® ® ® ®
The equation of motionis mr® =-mg j where m isthe mass of the particle, then r® =-g j

this equation can be written in terms of its components as

integrate (1),(2) with respect to the time "t", we get the velocity components

x*=C, and y*=-gt+C,
assuming that at t =0, x° =(v,cosa), y° =(v, sina) therefore C, = (v, cosa), C, =(v, sina)

GV Y- Y (<)

VAT LV 1 S ()

integrate (3),(4) with respect to the time "t", we get the position of the projectile at any
instant



x = (v, cosa )t + C,
=-1gt® +(v, sna)t+C,

since the projectile fired from the origin ( x=0,y=0) at t=0, then C, =C, =0

The equation of the path as arelation between x and y may be obtained by eliminate "t"
between (5) and (6) i.e.

2
y = xtana - % ................................................................................. @)
2vO cos”a

which is the equation of a parabolawith vertex upward and a vertical axis.

Discussion of the motion

The above motion may be decomposed into horizontal and vertical motions. The horizontal
motion is according to a uniform velocity v, cosa . This is because the weight of the body
works only in the vertical direction.

Whether the vertical motion is similar to the motion of a projectile under the effect of

aconstant gravity.

2.5.1) Maximum Height

when the projectile arrives to the highest point "A" in its path, the vertical component of

the velocity vanishe, and equation (4) becomes

0=-gt, +v,Sna
where t, isthe time needed to arrive "A" then
_Vpsina

g

The maximum height is obtained when t, =t i.e. from equation (6)

=YY -



(v2 sinza)

—\0

h——ZQJ P ()
the x-component of "A" is obtained from (5) and (8) i.e.

v2 sin2a
the last result may be obtained from the Cartesian equation of the path (7) by remarking

that "A" is the maximum point of the path.

2.5.2) Therange on a horizontal plane

it is the distance between the point of projection "O" and the point of intersection of the
path and the horizontal plane which passes through "O" .

Since the y-coordinates of the point "B" is equal to zero. Then, equation (6) gives
0=-1gt?+(vosina)t

the root (t=0) givesthe origin "O", while the second root gives the point "B"

tn = ZVOZna e PP PSPUPRPRY (4 i B

is called the time of flight, which is the time needed for the projectile to arrive "B" from

"O". itisequa twice the time of maximum height. To get "R" put t; =t into equation (5),
we get
e (v(z) sin2a)

I.e. the path of the projectile is similar about the vertical line passes through the point "A".

equation (12) shows that the angle of projection area and %- a.

2.5.3) Maximum Range

the maximum range is obtained when "R" isamaximum, i.e. when sin2a =1.1.e. a :%

V2
Rm:EO PP (1 1

the angle of projectionisa = %

=YY -



2.5.4) Therange on an inclined plane

let the particle be projected from "O" upward plane passes through "O" and inclines with

angle b on the horizontal. Let v, makesan angle a with OX suchthat a >b . To find R,

(the length of OC), get the coordinates of which is the point of intersection of the path

gx’
2 2

with the plane y = xtanb y
2vg cos”a

y = xtana -

2

gXx

I.e. xtanb = xtana - ——
2vO cos“a

i e gXx _sina sinb
o 2v(2) cos?a cosa cosb

e 9% _ sinfa - b)
o ZVS cos?a cosa cosb

. 2v2 cosa sin(a - b
i.e x, =—2 ( ) then therange R, =
gcosb cosb

_ 2v2 cosa sinfa - b) (15)

gcos® b

to get the time of flight T, on the inclined plane, put x=xc into equation (5)

2v2 cosa sinfa - b) .
(v0 cosa)Tb =0 Joosh i.e.

_ 2y sina - b)

Tb
gcosb

eeeien(16)

to get the angles of projection corresponding to the maximum range, put equation (15) into
the form
_ v2[sin(2a - b)- sinb]
gcos® b

we find that the angles of projection are a, %- BHD e (A7)

-YY-



the last equation shows that the same range is obtained when the angles of projection are
a,,a, where a, and a, make the same angle g with the line bisecting the angle between

the inclined plane and the vertical upward assuming the same velocity of projection.
a, :Z+%iq where g isany angle.
The maximum range on the inclined plane R, is obtained from equation (15), by putting

snza- b)=1 ie (2a-b)=F b am:%+% e (1)

Which is the angle gives the maximum range substituting into equation (15) we get the

V2

: . _ 5
maximum rangei.e. R, _—g(1+sinb) Y (1 £°)

2.5.5) The Safety Curve

If weimagine agun isfixed and project its projectiles with velocity v, at different angles.

We find two angles to hit any point in the plane of motion. Thisis clear from the equation
of the path

2 2
X X
= xtana - —3 or y=xtana - 3% (1+tan’a
y 2 2 y 2
2vOcos a 2vO
_ 2v2 2%y
1.6 tan®a - —2tana +—2-+150 ieiiiies e e e 2(20)
gx gXx

which is a second degree equation in tana i.e. for every point P(X,y), there are two

projected angles

\Y

v2 2v2y
1= T B (21)

gx |g2x® gx2
and can be hit the point "P" with these two values of a . Thisistrue only if the discriminate

2 2

. ‘. . V0 ) %
Ispostivei.e. y<5 ¥ Y 02224

-if the discriminate is negative then the two angles of projection are imaginary and then we
2 gXZ

cannot hit the point. i.e. y> \2/—0 e e (23)
g 2v
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If thediscriminate is zero then thereisonly one angle of projection, which hit the point
2 2
O e Y= B L, 24
Y=o ¥ (24)
The curve (24) is called the safety curve because it separates between two regions, the first
one is determined by equation (22) and any point in this region can be hitted, while the
second one is determined by (23) and any point cannot be at all. This region is called a

safety region.

-Yo.



SOLVED EXAMPLES

1-A projectile isfired from the edge of a 150 m cliff with aninitial velocity of 180 m/s, at
an angle of 30° with the horizontal. Find 180 m/s
a) the horizontal distance from the gun to the point
where the projectile strikes the ground.
b) the greatest elevation above the ground.

Solution

Given theinitial velocity v, =180m/s, a =30° and y =150m
(@ Since y=-1gt?+(j,sina)t b - 150 = - 3(9.8)t +(180sin30°
\ t?-1836t- 306=0 P t=199s or t=-15s

Hence x=(v,cosa)t= (180cosBO° )(19.9) =3100m

_ v2 sina ‘ 2 gn2 0!
(b) the total height = 150+(0—):150+ 180°9n° 307) _ 5633m
29 2(9.8)
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2-A Projectile aimed at a mark which is in a horizontal plane through the point of
projection. The projectile fall at (C) meter short of the aim when the angle of projection be
o and goes (d) meter too far when the angle of projection be B, show that if the velocity of
projection be the same in all cases the correct angle of project should be

q :Sin-laéisian +dsin2a ¢
g C+d a

Solution

Let g bethecorrect angle of projection to hit the tar get

v
2 .

Ca% 1 R— C:V Snza (1) %\
o>
_ : C
Case (2 R+d:VZSian ) R < >

v
2 .
Cae(d R="T2 (3 %\
g @
R . d

Multiply (1) by "d" and (2) by "C" we get

2 : 2 .
Rd- cd =Y 48N ) and RC+cd = C3N2b ()
g g

Adding (I) and (I1) we get

(dsin2a +Csin2b)
(Cc+d)

Ric+d)= @

(Q|<N

2
(dsin2a +Csin2b) or R:VE

by equating both (4) and (3) we get

(dsin2a +Csin2b)
(C+d)

_(dsin2a +Csin2b)

visn2g _ .
or sn2q = (C+d)

: =

v
g

\ gz lgyréldsinza +Csin2b)u
1729 cra)
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3- Two particles are simultaneously projected in the same vertical plane from the same
point with velocity (u and v) a angles (a, B) with the horizontal show that the line joining

them moves always paralel to itself and the time that elapses when their velocities are

uvsin(a - b)
g(vcosb - ucosa)

paralel is t=

Solution

(a) let after time "t" the two particles reach A and B, having coordinates (x1,y1) and (Xz2,y2)

for the particle reaching A,

y; =(usina)t- %gt2 and x; =(ucosa)t

for the particle reaching B,

y =(vsinb)t- %gt2 and x, =(vcosb)t

Therefore the Slope of AB = Y2~ %1 _(vsinb)t- 39t%- (usna)t+3 9% _ vsinb - usina
X

= = constant
2" X (vcosb)t- (u cosa)t vecosb - ucosa

Hence the line joining the two particles will always have the same sope, i.e. the line

joining them moves always parallel to it self.

(b) now consider the particle "A" suppose its coordinates at any time "t" be (Xi,y1),

therefore the sope of the direction of motion at any time is given by y—z ~usna-g ir;ssa g
X

similarity, the slope of the direction of motion of particle "B" is given by y—z :%
X

hence, if at time "t", the direction of motion of the two particles should be the same, we

usina - gt _vsinb - gt
ucosa vcosh

have

(usina- gt) vecoshb :(vsinb- gt) ucosa
(vcosb - ucosa)gt :uv(sina cosb - sinb cosa)
(vcosb - ucosa)gt :uvsin(a - b)

uvsin(a- b)

\ t=
g(vcosb - ucosa)
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PROBLEMS

1- A projectile isfired with velocity 400 m/s in a direction makes an angle of 30° with the

horizontal. Find a) the time of flight and the range b) the maximum height

=130 m/5

2- A projectile isfired with an initial velocity of 150 m/s /{ RN v
off the roof of the building. Determine the range R where -
it strikes the ground at B.

R
¥y
y——

3- A ball isthrown from A. if it isrequired to clear the e

e’ |2 1
wall at B. determine the minimum magnitude of itsinitial i'él_ ‘

At

velocity. | l )

I 12—

4- A particle is projected from a certain point . It is noticed that its range on the horizontal
plane which passes through the point of projection is equal to three times the maximum
height above the point of projection, and the velocity after two seconds from the time of
projection is equal to the velocity of projection Find the velocity of projection, also find the

position of the projectile after 5 sec from the beginning of projection.

5-A ship moves with velocity (v) and carry a gun which project its projectiles in the
opposite direction of the motion of the ship. If the gun inclines with an angle (a) to the
horizontal. And the initial velocity of the projectile is (v,) prove that the range is

2vZ sina (v, cosa - V)
g

and the angle of inclination corresponding to the maximum rangeis
+ V2 +8V. o

Y
cos ' & )
8 4v, H
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6- Two particles A, B are projected ssimultaneoudy from the same point and same velocity
(v).the motion is in the same vertical plane. Prove that if the two particles are in the of
motion, the straight line joining them moves parallel to itself, and makes a fixed angle with
the vertical with amount (o' + a) / 2 where a, o' are the angles of projection with the
horizontal. Prove also that the distance between the two particles increases with a constant
rate and the velocities of the two particles become parallel after time
(vecos(a'-a)/2)/gsn(a'+a)/2).



CHAPTER 3

SIMPLE HARMONIC
MOTION

3.1) introduction

The simple harmonic motion is arectilinear motion in which the acceleration is negatively
proportional to the displacement.
If "k" denotes the force at unit distance, the force at distance x will be —kx, the sign being

always opposite to that of "x". the equation of motion is accordingly

d“x
mF:-kX ............................................. (1)
if wewrite WZZ% e e e (2)
2
i.e. equation (1) becomes %:-sz e (B)
2
to integrate the equation (3) we write %:v%:%%vz) ................................... 4)

Substitute into (3) we get %(AVZ):-WZX integrate both sides, and using the initial

2
CONAItIONS @t 1 =0 X = X,V S Vg weneuneneneteeneienianaenaeneneeneneenenenneenenennesaennenoes(D)

Weget vi- :—WZ(XZ— x§)(6)
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equation (6) shows that the maximum value of the velocity is obtained when the particle is

at the center of the motion.

3.2) The velocity

dx V¢
V:a:i\/V§+W2X§—W2X2 O V=2W, [ +X - X2 e e e e ()
w

equation (7) shows that the speed at any instant depends only on the distance from the

center of attraction. Also, we deduce from equation (7) that the motion is possible only on

2 2 2
that part of the straight line x* £ x? +§ or - 1/x§ +% £XE + +% ..................... (8)
3.3) The Amplitude

2
The amplitude is defined as A:w/x§+§ e (9)

Clearly the amplitude of the motion depends only on the initial distance form the center of

the attraction, and the value of the initial speed. The speed v vanishes at the points C,,C,
l.e. it vanishesat x, =- A, x, =+A.

The maximum value of the velocity isat x=0 i.e. a the center of attraction, where the
following relation issatisfied Vi, =tWA ..ot e e e e (10)

The figure shows how the velocity changes with the position while the acceleration

vanishes at the center attraction, and reaches its maximum value at C,,C,.

The maximum value of accelerationis a,,, = #W?A .....ccooviviieciiieeiiiiee i eeeene e (11)

)

-wA
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3.4) Description of motion

If the particleisat C, then the motion begins from rest and the velocity increases towards
the center of attraction, until it reaches its maximum value at the center "O". the value of
velocity decrease after then under the influence of the attraction force until the particle be
atrest at C,. A smilar motion beginsfrom C, to C, , etc.

to calculate the relation between the distance and the time, rewrite equation (7) in the form

K Wi AZ- 2

dt

integrate both sides with respect to t
+ oL SWHEHCONSEANT et eaens (12

AZ - x?

the congtant of integration is determined from the initial condition of the postion of the

particle. The student can easily prove that any of the two signs gives the same result of the

integration i.e.
Ccos l(;—Q:WHg .................................... (13)
eAg
Where g isanew constant. Then
X=ACOSWE+G) . uueenesieeiiiriieieieeeeeeee e (14)

The angle (wt+g) is called the phase angle, and g is the initial phase angle. The relation

between the velocity and the time is obtained from (13)

v:%:—WAsin(ng) ................................ (15)

theinitial value of the phase g isobtained when t=0 i.e.

Vo

—ﬁ { -
cosg =~/ and sing o NRARIIRR T SRR PP (16)

-YY -



3.5) the periodic time

The time that elapses from any instant until the instant in which the moving point is again
moving through the same postion with the same velocity and direction is caled the
periodic time of the motion.

It is clear that the periodic time correspond the increase of phase angle (wt+g) with
amount 2p .

If t, and t, are the ingtants of time at which the particle exist at C, two consecutive times,

then (wt, +g)=(wt, +g)+2p .

I.e. t isindependent of the position of C,.

3.6) the frequency

the frequency N istheinverse of the periodic time N :% I.e. the frequency isthe number

of revolutions per unit time. Then, equation (14) represent the smple harmonic motion

with periodic time 2 and amplitude A.
w

3.7) circular motion

Consider aparticle "p" moves on the circumference of circle with radius"a" and center "O"

i.e. r=a then

let . and F, are the components of the acting force in the directions of increasing r and q

respectively. Then the equation of motion are

-Ye-



3.7.1) Circular motion with constant anqular velocity

WHEN % =W = CONSEANt +evvvveeeeeeneieesieeiee e (21)

egs (19) and (20) takes the form

Integrate €qs. (21) WE GBL 0 SWEH 06 «vvrreneneneeneienetien eeeene e enaanans (24)

Where q, isthe angle at the beginning of the motion.

3.7.2) Theperiodic time

if g iIsthe angle at time "t", then (q+2p) istheangle at time (t+t)

i.e. @+2p)=Wlt+t)+q eerriree e, (25)
subtract (24) from (25) we get t = ZWp ........................................ (26)

3.7.3) Thereation between the circular motion and SH.M

Consider the Cartesian ox, oy in the plane of motion. Let "p" be any point has a coordinates

x = acosq =acos\wt +q,)
y=asing =asin(wt +q0):acos(vvt +q - %) ............................................ (27)

I.e. the projection of point "p" on the axes ox, oy movesin a simple harmonic motion with
amplitude "a" and periodictimet .

-Yo .



SOLVED EXAMPLES

1-A particleismoving in S.H.M, with periodic time 4 sec. if it starts from rest at a distance

4 ft from the center, find the time elapses before it has described 2 ft and it's velocity.
Solution

2_p:4
W

If the acceleration be w? times the distance, we have

When the point has described 2 ft, it isthen at a distance of 2 ft from the center of its

motion. Hence the time that has elapsed = Lo '169(—9 = Ecos-lgf-Q:E.B =2 sec
w eAg p edg p 3 3

Also, the velocity =w/A?- X2 :%\/42- 22 =p+/3 ft/sec.

2-A point starts from rest at a distance of 16 ft from the center of its path and moves in
S.H.M. initsinitial position the acceleration be 4 ft/sec? find

(a) Itsvelocity at adistance of 8 ft from the center

(b) Its periodic time.

Solution

(i) let the acceleration be w® times the distance then 16(w?)=4 i.e. w? = %

hence its velocity at a distance of 8 ft from the center = %(162 - 82) = /48 = 443 ft/sec.
also its velocity when passing through the center = %(16)2 =8 ft/sec.

(ii) its periodic time= 2 = 4p sec.
w

-y



3-A light spring whose unscratched length is (€) cm, and whose modulus of elasticity is
the weight of (n) grammas, is suspended by one end and has a mass of (m) grammas

attached to the other, show that the time of a vertical oscillation of the massis

t=2p /nm_g;

Let "O" be afixed end of the spring, OA its position when unstreched ,
When the particleisat "P" ,where OP =x

Solution

Let T be the tension of the spring then, hook's law

T=1 X;Izngx_ll

hence the resultant upward force on "P" = T- mg P

¢

m+n U

|
F=ng” - mg="5

let" O'" be apoint on the vertical through "O" such that OO = m*n

upward force on "P" = :%[OP- OO]:n—Ig[O P|

its motion is simple harmonic motion about O, as center and itstime of oscillation is

mi ng
it will be noted that " O' " is the point where the mass would hang at rest, if it were placed
atrest at "P" the upward tension would be
[0O- I]:@éﬁmngl

'I@—mg
I 18 n g

=g
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4-A particle is attached to one end of the ends of inelastic string of length 1. The other end
of the string is fixed at a point of a horizontal plane. When the string is tension, the particle

Is projected with horizontal initial velocity v, perpendicular to the direction of the string.

Study the motion and find the tension in the string.

Solution

the acting force on the particle "p" is parallel to the radius.

I.e. the angular velocity is constant q° =w = constant

then q°=Y0
a

2 2
V—‘; =- % The minus sign shows the direction of the tension.
a

T=-ma

2a

The periodic timeist =2 =
w Vo

-YA-



PROBLEMS

1- A particle moves in S.H.M, its velocities 6 cm/s and 8 cm/s when the particle is at
distance 4 cm and 3cm respectively from the center of motion. Find the amplitude of

motion and frequency, also find the max. velocity and the max. acceleration.

2- A particle moves in S.H.M on straight line AOB with frequency (1/x) vib/sec. if O is
the center of vibration. A,B are the externa positions of the motion and P1, P2 are
bisecting points of OB and OA respectively. Calculate the time needed for the particle

arrive at those points.

3- aparticle movesin straight line defined by x = 3sn2t + 4 cos2t prove that the motionis

S.H.M then find the amplitude, the periodic time, maximum velocity.

4- A point P moves in a simple harmonic motion. If the distance of the point P from the
center of the motion at the ends of three consecutive seconds are 1 cm, 5 cm, 5 cm

measured in the same direction with respect to the center, find the periodic time.

5- A particle with mass m is suspended from afixed point A by an elastic string of natural
length o , and modulus of elasticity 4mg , where g is gravity acceleration. if the particleis
left to fall vertically from A, prove that the max. depth is 260 downward the point A. aso

prove that the time needed to cover this distanceis
— 2 + +— sm
Vg & 93%

6- A particle of mass 1 kg is suspended by a light elastic string such that its length
increases to 2to cm. if the particle is attracted after then a distance o cm downward and

leaves to move. Find the time needed for the particle to return to the state of rest again.

-Ya-



CHAPTER 4

WORK & ENERGY

4.1) introduction

In this chapter we shall integrate the equation of motion with respect to displacement and
thereby obtain the principle of work and energy. This principle is useful for solving

problems which involve force, velocity, and displacement.

4.2.1) Thework of a force

In mechanics aforce F does work only when it undergoes a displacement in the direction

of the force, for example, consder the force F having a location on the path S which is

specified by the position vector E , iIf the force moves along the path to a new position

(? :(? +d(? ; the displacement is then d(? .

The work dw which is done by F isascalar quantity defined by

®

® ®
dW =F d r =F dScosq,where |dr|=dS

I.e. the work is represented as the product of F and the component of displacement in the

direction of theforce i.e. Fdscosq, Or asthe product of ds and the component of the force

in the direction of displacement, i.e. Fcosq .
dw is+ve if 0°£q£90° & dw iS-ve if 90°£q£180° & dw=0 if q=90° i.e I®:’\d(?
or if theforceis applied at afixed point, in which the displacement is zero.

A the basic unit for work in the Sl system called ajoule (j) = N.m.



4.2.2) Thework of a variableforce

if a force undergoes a finite displacement along its path from S1to Se. and F = F(s), we

S, ne ®
have Wy, = gF cosqdS=gFd r
S n

Foos @ I

P
Foos §

& — — 4
Fri

If the working component of the force Fcosq is plotted versus S, asin figure the integral
represented in this equation can be interpreted as the area under the curve between the
points S1 and Se.

Foos &

F.

: Fcoad
L
L -

5 i -
A F.eomsg ® 5 5 5

if the force Fc has a constant magnitude and acts at a constant angle q from its straight line

path then, w,., =F cosq (S, - S;) Which isequal to the area of the rectangle.

4.2.3) work of a weight w
consider a particle which moves up along the path S /J;:;
from point (1) to point (2). At an intermediate point, the SRR - 4
H = . Y2
displacement n A= ——x
dr =dxi+dy j+dzk SINCE Wh=-Wt | :x/"'
e ® hxe ®je © ® ®H Y2 ® ®
Wy, =oFdr = @é—\/\/t Jj.édx i +dy j+dzki= o5-Wdy=-W(y,- y;)=-W(Dy)
51 n 2 g i

however that if the particle is displaced downward (- by) the work of the weight is +ve

- €Y -



4.2.4) work of a spring force

the magnitude of force developed in a linear elastic spring when the spring is displaced a
distance S from its unstreched position is Fs=K . S, where K is the spring siffness. If
the spring is elongated or compressed from a position S1 to Sz then, the work done on the
spring by Fs is (+ve) since in each case the force and displacement are in the same

direction. Werequire

S2 S
Wy, = oF dS= c‘)K.SdS:%K(Sg - Slz) Unstretched
S s position, s =

If aparticle (or body) is attached to the spring, then

- dr
The force Fsexerted on the particle isopposite to ﬂ = -
that exerted on the spring, consequently the force k s
Foree on
will do (-ve) work on the particle Particle
Example (1) "
The 10-kg block shown in Fig. rests on the smooth e 3 20 pnitial

T position of spring

incline. If the spring is originally unstretched, N
determine the total work done by all the forces acting " ™
on the block when a horizontal force P =400 N

pushes the block up the planes=2 m.

(K=30N/m, 6=30°")

Solution
Work done by the force p = pcosq (s) = 400(2c0s30°)= 692.8 981 N30
& 4 =40 N
Work done by the spring force Fs = - 1k(s?) = -/4(30)(2)>= -60 | /, G
Ny F,

Work done by the weight mg = - mg(y) = - (10%9.81)(2sin30°)=-98.1

The total work done W= 692.8-60-98.1=535 |

A



4.3) principle of work and energy

consider aparticle "p" which is located at some arbitrary point iy
on its path as shown. At the instant considered "p" is e A{\.\ T
subjected to a system of external forces, represented by the -

-

®
resultant F; =4 F. Normal components do no work.

Tangential components & I(?t =ma, , SINCE dr hasa magnitude ds along the path.

4 Fcosq =ma; = @Eé_m\/&!ﬂé
s Tty Sdsp

S Va
\ oF cosq (ds): ()mv(dv)
S Vi

-1 2_1 2 _
\Wl_z—imvz-imvl —Kz- Kl

Which is the principle of work and energy for the particle. It is convenient to rewrite it in
the form \ Ky =Ky +W, ,

Which states that the particle's initial kinetic energy plus the work done by all forces acting
on the particle as it moves from its initial to its final position is equal to the particle'sfina
Kinetic energy.

4.4) principle of work and energy for a system of particles

consider asystem of n particlesisolated within an enclosed region

of space as shown. Here the arbitrary i th particle, having a mass m

Is subjected to a resultant external forces F, and a set of internal

forces. & F; = f; which the other particles exert on the i th particle.
i=1

Inertial coordinate system

The principle of work and energy written for i th particle is thus
2® ® l2@ ®
\ If) Fi dri + If) fi dri :%mivig- %mivi%
fi1 fi1
\ éWl—Z =3 KZ_ a Kl
The internal work for arigid body is zero.

- Y-



Example (2)

The 3500-1b automobile shown in Fig. travels down the
10°inclined road at a speed of 20 ft/s. If the driver jams on the
brakes, causing his wheelsto lock, determine how far sthe
tires skid on the road. The coefficient of kinetic friction
between the wheels and the road is n = 0.5.

Solution
B ..l."___-l'
& Fy=0P Np- 3500(coslo°):o I “f.'ltm”b .
. e -""'"-F_*_JT
N 5 =3446.8(Ib) i :c
N,

thus F, =mN, =0.5(3446.8) = 1723.4(b)
the principle of work and energy \ K, =K, +W,. ,

18@9(20)2 +3500(SsinlO°)- 17234S=0 b S=195ft

2¢322¢g

Example (3)
F
The 2-kg block is subjected to a force having a constant direction
3 30

and magnitude £ :% N, where S is measured in meter.

When S=4m, the blloc:k Ismoving to the left with a speed %

of 8m/s. determine its speed when S=12 m/s. the coefficient

of Kinetic friction between the block and the ground isrm = 0.25.

Solution

$2
QWl_Z:%mv%-%mvlz b @(F cos30° - mN):%m(vg-vf)
s1

s2 -«
P o gg%eﬂgcos%o - 02583 §30° +10.6Lds = i(2)(v§ - (8)2)
~ el+Sgyg el+S 2% 2

\ v, =154m/ sec
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4.5) Conservation for ces and potential ener gy

If the total work done by forces in performing a series of displacement which bring the
bodies to their original position is zero, such forces are called conservation forces; for
example the work done by gravity when a particle of mass m ascends height h and then
comes back to the surface of the earth is —mg (h) +mg (h)=0.

Such is not the case with all forces. If for example a body is dragged through a distance S
against a congtant frictional force F, the work doneis F.S to bring the body to its former
position on the same path an equal moment of work F.S isto be done again. Thusthe total
work performed to bring the body its original position is 2 F.S (or more depending on the
path followed by the body) and not zero. These second type of forces are called non-

conservative.

4.5.1) potential enerqgy

the potential difference between two points a, b is defined as the work done exerted against

the effective force, in moving abody from point a to point b, i.e.

\VWop=-[Up-Ua)=-0F .dr ceeiiiii e e e (@)

the potential energy u(r) is a scalar function depends only on the position of a point
E =(x,y,z) and explicit independent on time.

a) Gravitational potential energy

=+
if aparticleislocated adistancey above an arbitrarily selected / !
datum asin figure, the particle's weight w; has positive u f f w "*"
since w; has the capacity of doing positive work when the "}f v, =0 i
particle is moved back down to the datum. Likewise, if the / W — y

particle is located a distance y below the datum, u, is negative T -
Ve ==—Wy

since the weight does negative work when the particle is
moved back up to the datum. At the datum u, =0;

w

in generd if y is +ve upward, the G.P.E of the particle of weight w, isthus u, =w; (y).

-0



. . U schied
b) Elastic potential energy e

k ¥
’wwwvww-a [v.=0
when an elastic spring is elongated or compressed a

distance S from its unstretched position, the E.P.E. ——
T

k
U, dueto springis u, :%KSZ, i.e. always positive. W\M—O !

f——5—

A if a particle is subjected to both gravitational and elastic forces, the particle's potential

-

energy is u :img(y)+%KSZ.

4.5.2) Relation between work done and enerqy

from the relation between work done energy (Kp- Ka)=Wa.p =-Up-Uga)= coivvvvivenennnn(2)
if the L.H.S of (2) is +ve then the R.H.S is adso positive this means that the increases in
kinetic energy of a body between two positions is accompanied by decrease in potential
energy. Or

(Ka+Ugz)=(Kp +UL) = CONSE@Nt vetvuetenveeieneieeee e eneaeene 3
which means that the sum of kinetic and potential energy at any point is always constant
independent on time.
The last formula represent the law of conservation of energy which states that the total
energy for a system of bodiesis congtant, if the forces exerted are conservative i.e. does not

depend on the time explicitly.

A the gravity, electromagnetic the nuclear,... forces are conservative, but the frictional

forces are non-conservative.

A



Example (4)

A smooth 2-kg collar, shown in Fig., fitsloosely on the vertical )
shaft. If the spring is unstretched when the collar isin the position A, [ T
determine the speed at which the collar ismoving wheny =1 m, s ]
if (a) itisreleased fromrest at A, and

(b) it isreleased a A with an velocity VA =2 m/s.

Solution

(a) the collar isreleased from rest at A, and

(Ka+Ua)=(Kc +Uc)

O+O:%m\/§ +{%ks2 - mg(y)}
JIEmy # (075 m) = 125 m

0+0=12v¢ +{%3(o.5)2 -2 9.8(1)} 0.75 m

Ve =4.39m/ s

(b) the collar isreleased with v, =2m/s

(Ka+Ua)=(Kc +Uc)

2wk +0=2m@ +{1ks? - moly)}

12(2)* +0=12v¢ +{% 3(0.5)? - 2 9.8(1)} ses=125m— 075m =05m
Ve =4.82m/ s
Example (5) e, | |
| m < I ]
The cylinder has a mass of 20 kg and is released I'x ‘ ,;@{ —[
from rest when (h=0). Determine its speed when ! ) h
(h=3m).The springs each have an unstretched length k= 40N/m k=40Nm |
of 2m.
Solution

(Ka+Ua)=(Kg+Ug)

O+O:%m\/% +{%ks2 - mg(y)}

. e
0+0=1(20\3 +2$%4o§3\/22 -32. 2,% g 2+ 9.81(3)

vg =6.97 m/s
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4.5.3) conser vative force

Since u(r) isafunction of position only and independent on the time then ¥ isafunction
of position only.

And since the work done exerted by ¥ in displacement a body from ato b independent on
the path, then
\ W@a® b)=-w(p® a) 0
\ W(a® b)+W(b® a)=0

_ ® ®
e oF .dr=0

4.5.4) Relation between the potential enerqy and conser vative force

since u(b)-u(a)=-w(a® b):-%l(@:.c(?r then the potential energy for a body at a point T s

u(r)=u(a)- w(a® b):U(a)—(‘j(rD:.((j@r where u(a) is constant and is not defined. If we

a

chooseu(¥)=0, then U(r):-r@%c(?r which means that the potential energy of a body at
¥

position E equal the work done exerted against the effected force to remove it from ¥
®
tor .

From the last formula and using the Cartesian product of vectors we have du(x,y,z)=- F .dr

gd g—yﬂy+§—1ﬂy—— fxdx+ fydy+ fzdz)

_ dAud _ #ud _ &Aus
or f f
X= gﬂxﬂ §_YE = gﬂzﬂ
® e ®
or F:-e el 0 +aEﬂu aEﬂuoku_- Nu
o &y Sz

®
or F=-gradU)
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The last equation relates a force to its potential function u(r) and thereby provides a

. . . . ® . .
mathematical criterion for proving that F isconservative.

Example (6)

®
prove that the force F= r

|—3. IS conservative, such that | is congtant. Then find its
]
potential function

Solution

If we take any closed path say a circle of radius "C" and origin as a center, then the
® ® ®@ ® ® ®

r.r

equation of thecircle r2=C? or =C? p r.dr=0 then gF .dr=0

@ ® : : :
@'—B.r .dr =0 therefore this force is conservative.

r

. . _ r® ® rp ® ® roar |
To find the potential function u(r), U(r)=- oF .dr=- g—.1 .dr=-1 5> =—
¥ ¥r ¥re s
Example (7)
®

Prove that the force F g%yz _| +§3xz +z° j +(6xyz+y)k is conservative, then find its

potential function
Solution

X oz TV o2 ang IFX

Ty ix 1z

Since == =6yz , —L=6xz+1 , ——=6xz+1
x 1z Ty

Therefore thisforce is conser vative.

- - - r® ® A
To find the potential function u(r), U(r)=- oF .dr =- Oé% yz _dx+§3xz +29dy+(6xyz+ y)dz E
¥

u(r)= %%xyzz%(?;xyz +yz) (3xyz +yz)j

\ U : e(Sxyz + yz)+ CE

-€9-



PROBLEMS

1- 10-kg block rests on the horizontal surface. A spring
which in not attached to the block has a fiffness

K =500 N/m and isinitially compressed 0.2m from

C to A, after the block isreleased from rest from A,

determine its velocity when it passes point D. The coefficient of friction between the block

and the planeis n=0.2

® ® ®
2- A variable force F =2y 1 +xy | acts on a particle. Find the work done by the force

when the particle is displaced from the origin to the point p=(4,2) along the parabola
y? =X.

3- A body of mass 4-kg moves in the force field F :%O.(?

r
() prove that this force is conservative
(i1) find the potentia function.

(iii) if the velocity of the body v(r=1)=20m/ s, find its velocity art r =2m.

4- Find the conservative force which has the potential function u(x,y,z)=3x22? - 2xy?z3 +C
then find the work done by this force to move the body from point A=(-2,1,3) to point
B=(1,-2,-1).

5- A dlider of mass 3 kg attached to a spring of

stiffness 350 N/m and unscratched length 0.6 m
iIsreleased fromrest at A as shown . Determine
the velocity of the dlider asit passes through B .




CHAPTER 5

Motion along
A Smooth Vertical
Circle

5.1) Motion on the outside of a smooth vertical circle.

Let aparticle starts from rest at the hightest point and moves
down aong the outside of the arc of a smooth circle, discuss
the motion.
AOB isthe vertical diameter of the circle of radius"r", pisany
Position of the particle.
Let AN=h=A0-ON =1 (1-cOoS0) ....e0vvverrerrrrennnn. @
From thelaw of conservation of energy

(KA+UA):(KIO +Up)

0+mg(r)=2mv? + mg(ON) v2=2g(r- ON)=2gh.............. 2)

Equation of motion along the nor mal PO.

2 R
—— =mgcosq - R B
- 26 mgsin0
R= mtégcosq - —7% or R=mg(3cosq - 2) mg cos 0
Mo
or R=9(r-3n) oo, (3

form (3) R vanisheswhenor h= % or cosq = é , the particle no longer passes the arc and

leave it.

-0Y .



5.2) Motion on theinside of a smooth vertical circle.

A particle is projected from the lowest point with velocity

v, and moves along the insde of the arc of smooth vertical

circle, discuss the motion. P is any position of the particle
at any time "t".

h=AN=r (1-cosf) datum h
From thelaw of conservation of enerqy
(KA+UA):(Kp +Up)
1mvg +0=1mv3 + mg(AN) vZ=vZ- 20r(1- cosq).uveennnnnnn, (1)
R
Equation of motion along the normal PO. P
) [S]
™ _ R- mgcosg s Mg sng oo
- 0 _m;
R=me—+gcosqr OF R=—2+mg(3c0Sq - 2) vevvvnvrevrnrnnnnnnnn, (2
mg r g r

Equation (1) givesthe velocity of the particle and equation (2) gives R, pressure of the

curve on the particle.

2

A at the lowest point A, h=0,(q =0) and R:%+mg .............. (3)

A at the highest point B, h=2,( =p) and R:Tm(vg - Sgr) and by (1) v2 =2 - 4gr

in order that the particle may not leave contact with the arc of the circle, R should not
vanish till the particle reaches the highest point, i.e. vZ > 5gr ,the velocity v also does not
vanish at any point; thus the particle makes a complete revolution.

when v =5gr , then from (3) R=6mg so that if the particle is projected with a velocity just
sufficient to take it to the highest point, pressure at the lowest point = 6mg, six times the

weight of the particle.
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Special cases:

1) Suppose that the velocity v vanishes at a height h, and the pressure R vanishes at a
height h,, then from (1) and (2) we have

A Vo +gr
=_0 and =_0 I
h 20 h, 39

: Ve P+ gr
if h < p —2<-0
h <h, 20 3g

P Vi<2gr

thus if the velocity of projection v, < the velocity sufficient to take the particle to the level

of the horizontal diameter, the velocity vanishes before the pressure vanishes. The particle,
therefore stop, and moves down acquires some velocity at the lowest point A, moves on the
other side of A through an equal height and goes on moving to and from just like the bob

of aclock pendulum.

2) if h<h, P v, >2gr so that if v’ >2gr, and v} <5gr i.e. when the velocity of
projection is sufficient to take the particle higher than the level of the horizontal diameter
and isinsufficient to allow the particle to make complete revolutions, the pressure vanishes
before the velocity vanishes. The particle therefore leaves the arc and on account of the
velocity it possesses, it moves freely along a parabolic path whose equation can be
obtained.

3) Bead on a smooth vertical circular wire, or that of a particle moving inside a smooth
vertical circular tube, the bead or the particle necessarily keeps to the circular path and the

guestion of itsleaving the circle does not arise.

4) Motion of a particle attached to the end of string. If a particle is hanging from a fixed
point by a light inextensible string and is projected with a certain horizontal velocity, the
motion is exactly the same as that of a particle moving inside a smooth vertical circle. We
have only to substituting the tension (T) for the pressure (R), and the length of the string
(1) for the radius (r) of the circle.

- oY -



5) In the case when v >2gr, and v’ <5gr , the tension vanishes some where above the

point of suspension, the string becomes slack and the particle describes a parabola freely

so long as the string does not become tight again.

6) In order that the particle may make complete revolutions, the string must be strong

enough to bear atension of at least six times the weight of the particle.

-0¢ -



Example (1)

A heavy ring is constrained to move on a smooth vertical circle wire of radius(a), if itis
projected from the lowest point by velocity ./3ga , Find

(i) The angle at which the ring change its contact with wire and its velocity at this point.
(i1) The max. height at which the ring reaches with this velocity.

(iii) Theleast velocity which the ring can be projected to describe a complete revolution.

solution
(i) since v® =vZ - 2gr(1- cosq) b v =ga(l+2cosq)

The equation of motion along the radius.

the bead changes its position of contact with wire at a point for which R=0

0=mg(1+3cosq)P q = cos'lge—lg
e3 g

ga

the velocity at thisinstant v2 = ga§[+ 289?19%3 V=5
é 3 gy

(i1) to find the max. height, we know that the velocity at the max height is zero

since v2 = ga(l+2cosq) or v2=vZ- 2gh ) 0=(3ga)- 2gh \ h:ga

(iii) from (1) put g =180° and v2 3 0

V Zga(l— coslBOO) b Vi3 4gab v,3 2/ga

- 00 .



Example (2)

A Stone of Weight W istied to one end of a string and is describing a circlein avertical
plane, if the maximum speed of the stone is twice the minimum speed, Prove that when the
string is horizontal itstension is 10W/3.

solution

SINCe Vi =2Vin P\ VoA =2vg.eennn(1)

vZ =V2 - 2ga(l- cosp)=V2 - 4ga

3 16ga
ZVA =4gab V4 = 39 ......................... 2

The equation of motion along theradius OC.

to get the velocity at point C ~ vZ =V - Zgagi— cos%g b V2 :%ga— Zgazl—;ga ...... (3)
é 2

substituting (3) into (2) weget \ R= gg%o ga-=

- o1 -



Example (3)
A Particle hanging from a fixed point by a light string of length (a) is projected
horizontally with velocity v, =./nga to describe a vertical circle, find the value of n that

makes the string dack at an angle 6 = 120°, then show that the parabolic path of the
particle passes through itsinitial point of projection.

solution

The equation of motion along the radius.

since the particle leaves its contact (dack) at = 120. therefore R=0

O

2
\ﬂ+mgcosq:0 P\
a

m(nga)+rrmgcos€e?—p9:0 P \ n=
a e3g

N~

and vgzgga

The path of the particle after falling isa parabola (motion of projectile)

2

y = xtana - % ............... 2
2vO cos”a

to subgtitute in equation (2), we first find the velocity of projection at point "A"

vi=v3- 2gr(l- cosq) P V3 :%ga— Zga(l— 0051200):%ga

by substituting a =60°, nga, y:_g

Bat
=3 €% 5 3

0 1
\ y, = aztan60° - . ="a-3a=--a
§7 g Zgai gai(cos60° )2 2 2

since y, =y, therefore the parabolic path of the particle passes through its initial point of

projection.
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PROBLEMS

1- A ball of mass 10-kg is attached to one end of a string and is describing a circlein a
vertical plane, if the maximum speed of the ball is twice the minimum speed, Find the

tension when the string makes an angle of 45° with the downward vertical.

2- A particle of mass 5 Ib constrained to move inside acircle of radius 3 ft, if it is projected
horizontally with speed 25 ft/sec, find

a) the velocity and the reaction when the string be horizontal.

b) the least velocity of projection that the particle may be able to make a complete
revolution.

C) the max. tension that the string must be able to bear .

3- A particle is projected horizontally with speed /iga from the highest point of the

outside of a fixed smooth sphere of radius (a), show that it will leaves the sphere at point

whose vertical distance below the point of projectionis %9.
eo g

4- A particle attached to a string of length (£), it is projected horizontally with a velocity
v =(2++/3)g1, show that it will rise to height of 1{1+-L) before the string becomes slack,

then find its velocity at this position.

5- A particle attached to a string of length (a), it is projected horizontally with a velocity

:(2+\/§)ga, show that the string becomes slack when it has described an angle

cos’ g

ﬁz
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CHAPTER 6

IMPULSE &
MOMENTUM

6.1) introduction

In this chapter we will integrate the equation of motion with respect to time and thereby
obtain the principle of impulse and momentum. This principleis useful for analyzing

problems of impact, steady fluid flow, and system which gain or lose mass.

6.2) IMPUL SE

Is defined as the product of the force and the length of the time interval. If F isaconstant

force acting on a certain body for a certain interval time "t" then the impulse is given by

The impulse vector acts in the same direction as the force, ansits magnitude has units of
force-time (N.s) or (Ib.s)

6.3) Linear Momentum

Each of the two vectors of the form ®L: m.f/ is defined as the linear momentum of the

- - - - ® - - ®
particle. Since m isascalar, the linear momentum vector L asthe samedirectionas v, and

its magnitude mv has units of mass-velocity (kg.m/s) or (slug.ft/s).

- 09 .



6.4) Impulse — Momentum principle

the change in momentum of a particle during atime interval is equal to the net impulse

exerted by the external forces during thisinterval.

®

® N &y 9
= 9: g_ b
QF mga%ia mg dtg

\ (‘j:dt:m(‘yiv

or Impulse P=mlV, - V,) covreeareenns (3)
hence, change in momentum is equal to the impulse.

Scaar equations:

px=gbxdt=mf(v,), - ()], Py=gfy.at=nlly,). - (v)], Pz::é)é@z.dt =m{(v,), - (v,).]

ty t

hence, change in momentum is equal to the impulse. For a system of particles moving

under the effect of several external forces, we have:

®

ot o &y
aFI:am—V ................ (4)

I.e. the change of linear momentum of the system of particlesis equal to the impulses of all
the external forces acting on the system during thetime t, to t, .

6.4.1) Conservation of L inear momentum for a system of particles.

When the sum of the external impulses acting on a system of particlesis zero, we have
amv),=ad mv,), .ooooonns (5)

thisequation is referred to as the conservation of linear momentum. It states that the vector

sum of the linear momentum for a system of particles remains constant through the time

period t, tot,.



6.4.2) Impulsive force

when a moving body strikes a fixed object or impinge on another there is a sudden change
of motion. The forces acting on the bodies are great and act on them for such a short time
that it is difficult to estimate either their intensity or the time during which they act. Such
forces are known as impulsive forces. In these cases instantaneous changes of velocities
take place and it is comparatively easy to measure the effect of the forces by their impulses
or changes of momentum produced.

It isimportant to remember that an impulseisnot a force

For example: a hammer strikes a ball of mass "m™ and sendsit off with a velocity "u" then
mu is the magnitude of the impulse which is given to the ball and nothing can be knowing
about the force exerted by the hammer unless the time during which the force acts is also

known.

6.5) Impact (Collison of elastic bodies)

Elasticity : If we dropped a ball of glass on a marble floor, it rebounds aimost to its
origina height but if the same ball were dropped on to a wooden floor, the distance
through which it rebounds is much smaller. If further we allow an ivory ball and a wooden
ball to drop from the same height up on a hard floor the height which they rebound are
quite different. the velocities of these balls are the same when they reach floor, but since
they rebound to different height their velocities on leaving the floor are different.

Again, when a ball strikes against a floor or when two balls of any hard material collide,
the balls are dightly compressed and when they tend to recover their original shape, they
rebound.

The property of the bodies which causes these differences in velocities and which makes
them rebound after collision iscalled elasticity.

If abody does not tend to return to its original shape and does not rebound after collision, it
Issaid to be inelastic.

- -



In consdering impact of elastic bodies, we suppose that they are smooth, so that the
mutual action between them takes place only in the direction of their common normal at
the point where they meet, there being no force in the direction perpendicular to their
common normal.

When the direction of each body is along the common normal at the point where they

touch, the impact is said to be direct, otherwise is said to be indirect or oblique.

6.5.1) Direct Impact

suppose two smooth spheres of masses m, and m, moving in the same straight line with
velocities u, and u,, impinges together. The forces which act between them during the
collison act equally but in opposite directions on the two spheres so that the total
momentum of the spheres remain unaltered by the impact. If U be the common velocity of
the spheres after the collision and if the velocities are all measured in the same direction,

we have
U,

before impact

m,

line of impact

after impact e

(m, +m,)U =mu, +mu,
this equation is sufficient to determine the one unknown quantity U .

But we know, as a matter of ordinary experience, that when two bodies of any hard
material impinge on each other, they separate aimost immediately and a finite change of
velocity is generated in each by their mutual action depending on the material of the

- Y-



bodies. Hence the sphere, if free to move, will have after impact different velocities say v,

and v,

The equation of momentum now becomes

MV, + MV, MU, + MU, ceeeen e aneienen e, (@)

this single equation is not sufficient to determine the two unknown quantities v, and v, .
Another relation between the velocities is supplied by Newton's Experimental law which
states that

"when two bodiesimpinge directly, their relative velocity after impact is constant ratio to
relative velocity before impact and isin the opposite directions’

If bodies impinge obliquely, the same fact holds for their component velocities along the
common normal at the point of contact.

The equation derived from this law for the above spheresis

ce= T, 3)

u, - u,

The congtant ratio € is called the coefficient of elasticity or restitution. It depends on the
substance of which the bodies are made and is independent of the masses of the bodies and
their velocities before impact. The value of e differs considerably for different bodies and
varies from zero to one.
When (€=0), the bodies are said to be inelastic. In this case we have v, =v,, i.e. if
two inelastic spheresimpinge they move with the same velocity after impact.

When (e=1), the bodies are said to be perfectly elastic.

Both these are ideal cases never actually realized in nature.
To find the velocities of the spheres after direct impact we solve equations (1) and (2) we
get

V= mu, +mu, - ernz(ul_ uz) and v= rn1u1+rn2u2+ernz(u1_ uz)
m, +m, m, +m,

S



Losses in kinetic energy

In general there isalways aloss of kinetic energy whenever two bodies impinge.

LossinK.E = Q—mlu += mzu = Q—mlv += rr12v20
o

- 1PN G u)-e)

2

Example (1)

A ball of mass 8-lb moving with velocity of 4 ft/s is overtaken by a ball of mass 12-lb
moving with avelocity of 9 ft/s. if (€=0.2), find the velocities of the balls after impact and
the loss of kinetic energy

(i) if the two balls move in the same direction.

(i1) if the two balls move in the opposite direction.

Solution

(i) let the direction of motion of the first bal be taken as positive and let v,,v, be the
velocities after impact, then

8v, +12v, =8x4+12x9=140 and v,-v, =-0.2(4- 9)=1

which give v, =7.6ft/s v, =6.6 ft/s

1

1 u él
loss of K.E = §L8(a) + 112(g) 76) +=12(6.6f 5 =57.6ft.Ib
& 8(a +S1200) - £8(76) 12066
(i)
8v, +12v, =8x4- 12x9=-76 and v,-v,=-0.2(4+9)=-26
which give v, =-5.36ft/s v, =- 2.76ft/s

lossof K.E = €L8(a) + 212(9)Y- €L8(5.36) + L12(2.76)* Y= 389.3ft.Ib
S() ()HSZ()Z()H
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Example (2)

A ball A, moving with velocity of u,impinges directly on an egual ball B moving with a
velocity of u, in the opposite direction. if A be brought to rest by the impact, show that

(1- e)u, =(1+e)u,

Solution

Let v, be the velocity of B after impact and let m be the mass of each, then since A is
reduced to rest after impact, we have

m(0)+mv, =mu, - mu, Or v,=u,-u,
and 0-v,=-¢elu, +u,) or v,=elu +u,)
from (l),(Z) vV, =U - U, = e(ul +U2)

\u,(1- €)=u,(l+e)

-"o.



6.5.2) In-Direct Impact [Oblique]

suppose that at the moment of impact the direction of motion of the spheresis not along the
line joining their centers. let m, and m, be the masses of two smooth spheres with centers
A and B at the time of impact, u, and u, the velocities just before impact and v,, v, the
velocities just after impact.

a, b thedirections angles before impact and q,j the directions angles after impact.
Since the spheres are smooth, there is no impulse perpendicular to the line of centers and

hence the resolved parts of velocities of the two spheres in the direction perpendicular to
AB (line of impact) remain unaltered.

m Ccos

before impact

m S o

1,

uz sn

(3! 1z

m, m,

line of impact

"\'\LZ"
r 2
Vi
Vi cos 8 Vz COS
== =
after impact - =
E V) i Va
- &
(V2R Lo 1o B VA= o - @
VSN = U, SIND oo 2

since the impulsive forces acting during the collision on the two spheres along their line of

centers are equal and opposite, the total momentum along AB remains unchanged.

[



m,v, cosq +m,v, COSj =mu, cosa +mu, cosb ..................... 3

by Newton's experimental law for relative velocities resolved along the common normal
AB, we have

v, 00sq - v,c0s] =- €(u,cosa - u,cosh) ..........eeiiiiiiiinn, 4)

we deduce the following particular cases from the above equations:

(@) if (u,=0), from egn. 2 (j =0), if the sphere of mass m, were at rest, it will move along

the line of centers after impact.

(i) if (u,=0)and m, =em,, from egn. 2 (j =0), and then from egn. 5 (q=0), so that if
a sphere of mass m, impinges obliquely on a sphere of mass m, at rest, the direction of
motion of the spheres after impact will be at right angles if m, =em, . This evidently hold
true when the spheres are equal and perfectly elastic. (u,=0), (e=1) and ( m, =m, ),

@iit) if m =m,,(e=1) then v,cosq=u,cosb and v,cosj =u,cosa . i.e. if two equal and
perfectly elastic spheres impinge they interchange their velocities in the direction of their
line of centers.

Also by this case, we get tangtanj =tanatanb . If follows that, if two equal and perfectly
elastic spheres impinge at right angles, their directions after impact will still be at right
angles.

Losses in kinetic energy

In general thereis always aloss of kinetic energy whenever two bodies impinge.
- od 1 .0 o 1,0
Lossin K.E = ¢Zmu? +=mu? = ¢=myVv> +=myV: =
o Mt Fo MU, 2o e MV, Fo MV~

%ml(uf cos’a +ufsin2a)+%mz(u22 cos’ b +u?sin’b)
_é p

- %rnl(vlz COSZq +V129.n2q)+%rn2(vj COSZj +V229.n2j )9
© (%]
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but the components of the velocities at right angles to the line of centers are unaltered and
thus, we have

v,sing =u,sina  and v, sinj =u,sinb

hence the lossin K.E= géml(uf cosza)+lmz(uj coszb)g— (i:aéml(vl2 coszq)+im2(v22 cos’j )9
e2 2 g e2 2 2}

it is follows that it is only velocity components in the line of centers that can affect a

change in the kinetic energy of the spheres.

Example (3)

A smooth sphere of mass 5 Ib moving with a velocity 8 ft/s from a direction 30° collides
with a sphere of 3 Ib moving with a velocity 10 ft/s determine the subsequent motion of
the two spheres take (e=0.6).

Solution

since the momentum after impact along the line of centers = momentum before impact
5v, cosq +3v, cosj =5x8c0s30° - 3x10€0S60° ..........eunennns 3

by Newton's experimental law for relative velocities

V, COSq - V, COSj = - 2(8 €0S30° +10C0S60°) ....vvivrireneae, 4)
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from (3) and (4) we have
3V, cosq +5v,C05) =32v/3 OF V,C08 =43 ..eeiiiiiiiinnnn. 5)

from (2) and (5), we have v, =11 ft/sec and j =51°20"

Example (4)

Two equal balls (m) are lying in contact on a smooth table, athird ball (m') moving with
velocity (u) impinges symmetrically on them, prove that this ball is reduced to rest by the

impact if 2m' = 3em.

Solution

Before impact, let u be the velocity of m', which isreduced to rest after the impact
The spheres being equal in size and the common tangent makes equal angles each 30°
By symmetry the velocities of each ball before impact be equal, say equal to v'.

The total momentum of spheres along the common tangent line will remain constant.
mv cos30° + mv cos30° =mu Or +/3mV =mu .......... Q)
by Newton's experimental law for relative velocitiesalong AB or BC

v -0=-¢0- ucos30°) or v':geu ................. (2

from (1) and (2), we get
2m' =3 em.

- 4.



6.5.3) Impact against a fixed plane.

Suppose a smooth sphere of mass m, moving with velocity u, strikes a smooth fixed plane
in a direction making an angle a with the normal to the plane, and that it rebounds with

velocity v making an angle 6 with the normal. Since the plane is smooth, the component of

-/

after impact

the velocity along the plane must remain unaltered.

vsing =USNA ...oviiieeneae @ before impect

The plane being fixed, its velocity istaken as zero.

By Newton's experimental law for relative velocity along the common normal (line of
Impact), we have

veosq - 0=-¢&(- ucosa-0) P \ VCOSQ =€UCOSA ............... (2)
squaring and adding (1) by (2), we get v? =u?(sin?a +e? cos*a ) dividing (2) by (1) we have
cotqg =ecota .......coeeeeiiiinnnns 3

These equations gives the velocity and direction of motion of the sphere after impact.

The following particular cases from the above equations:

(i) if a=0 then q =0, therefore v=eu. i.e. when the impact is direct, the direction of

motion of the sphereis reversed after impact and its velocity is reduced in theration e: 1.

(i) if e=1, g=a and then v=u. i.e. when the impact is perfectly elastic, the angle of
reflection is equal to the angle of incidence, and the velocity remains unchanged in

magnitude.

(iii) if e=0, g =90° and then v =usina . i.e. when the plane is perfectly inelastic, the sphere

simply dlides along the plane, its velocity parallel to the plane.



. 1 1
LossinK.E = =mu? - =mv?
2 2

1 1 : 5_ 1 .
=—mu?- Zmu2&&ina +e2cos’a 2= =mu?d - e* %os’a

2 2 8 g 2 [7]
Impulse = change of momentum perpendicular to the plane

= mucosa - (- mvcosq) = m(l+e)ucosa

Example (5)

A ball weighing one pound and moving with a velocity 8 ft/simpinges on a smooth fixed
plane in a direction making 60° with the plane, find its velocity and direction of motion
after impact if the coefficient of restitution is 0.5 . Find also the loss of kinetic energy and

the impulse of the plane due to the impact.

Solution

8c0s60° = v cosf

i
7by dividing f =40° 53¢ and v=5.3ft/s
1 (8sin60°) = vsint e J

lossinK.E = %m(uz - VZ):%(B_:LZ)(SZ i 5_32):%

Impulse = m(1+e)ucosa = (1)¢ﬁ+%9800530° =104 ft/sec
é 2g¢
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Example (6)

A particle fallsfrom aheight h intime t up on afixed horizontal plane it rebounds and
reaches the maximum height h' in timet', show that (t' =et) and (h' =€* h) aso prove
that the whole distance (up and down) described by the particle before it has finished

rebounding is h[(1+€?)/(1-€*)] and the time that elapsesis [(1+e)/(1-€)] \/% :

Solution

The time taken and velocity u acquired on reaching the horizontal plane are given by

u’=2gh,and u=gt Ort:\/E ................................ @
g

the velocity of rebound being eu, the time t' and the max height h' attained by the particle
to reach the highest point where its velocity is reduced to zero, are given by

eu=gt,and eu’=2gH OF t =@l ....cooovvriiiriiiiienannnn, (2

it will reach the horizontal plane again with the same velocity eu in the same time t=et'
after moving the same distance h'=e*h

thus the first rebound and the second rebound takes place, the particle takes 2et and
describes the total distance up and down equal to 2 e*h.

the same process will be repeated subsequently till the particle comes to rest, thus the

whole time taken by the particle during the motion = t+2et+2e +...... = t+2t(ete*+...)

= t+(2et/1-e) = t[ 1+(2e/1-e)]= (1+e/1-e) t = (1+e/1-e) \/%

and the total distance described by it = h+2eh+2eth=h+(2€*h/1-e*)=(1+€*/1-€*) h
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6.5.4) A Projectile impinging on a fixed plane.

A particle projected with a certain velocity in a certain direction, other than the horizontal
and vertical may strike a horizontal, a vertical or an inclined plane, and may continue its

motion after rebounding from the plane.

Example (7)

A ball is projected with velocity u at an elevation a from a point at a distance (d) from
a smooth vertical wall in a plane perpendicular to it after rebounding from the wall it
returns to the point of projection prove : u? sin2e = gd ( 1+ 1/e)

Solution

Let the time taken by the particle to move from O to A
d

ucosa

t =

1

and the time taken to return from A to O
d
t, =
eu cosa

hence the total time of the motionist=t, +t,

d &, 10 (1)

t=(t+1,)= ucosa @ eg

since the vertical displacement of the ball iszero\ y=0

O=usina(t, +t)- 2l +t.F b (t, +t,)= 2“2”6‘ ................ 2

d &, 16:')_ 2ucosa

by equating (1) and (2) we have
ucosa e €g g

gdg.‘H 19_ 24 sina cosa
e €g
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\ gdg.‘H 19 2 gn2a
e €g

PROBLEMS

1- A ball impinges directly on a similar ball at rest. The first ball reduced to rest by the
impact. Find the coefficient of restitution if the half of the initial kinetic energy is lost by

impact.

2- A ball impinges directly on a other ball at rest. Prove that if the coefficient of
restitution be equal to the ratio of their masses, the balls will leave in directions at right

anglesto each other.

3- A ball of mass 200-g impinges on another equa ball at rest with velocity 1.5 m/s.

determine their final velocitiesjust after impact if the coefficient of restitution is e=0.85.

4- A ball of mass M moving with a velocity V impinges with another of mass m at rest.
Both are perfectly elastic (e=1) and the ball m is driven in a direction making an angle 0

with the line of impact, show that its velocity is 8‘3‘ 2M Q\/cosq :
em+M g

5- A smooth ball impinges on another smooth equal ball at rest in adirection that makes an
angle a with the line of centers at the moment of impact. Prove that if D be the angle
through which the direction of the impinging ball is deviated then

(1+e)tana
1- e+2tan’a

tanD =
6- A ball weighing 10-Ib and moving with a velocity 30 ft/s impinges on a smooth fixed
plane in a direction making 60° with the plane, find its velocity and direction of motion
after impact if the coefficient of restitution is 2/3. Find also the loss of kinetic energy and

the impulse of the plane due to the impact.
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7- A ball projected from a point O hits a vertical wall, rebounds and passes through the
point 16 ft above O two seconds after projection. If the distance of the wall from O is

30+/3 ftand e = 3/5; find the magnitude and the direction of the initial velocity of the ball.
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